Extensions 1→N→G→Q→1 with N=C22×C4 and Q=D13

Direct product G=N×Q with N=C22×C4 and Q=D13
dρLabelID
C22×C4×D13208C2^2xC4xD13416,213

Semidirect products G=N:Q with N=C22×C4 and Q=D13
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1D13 = C2×D26⋊C4φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4):1D13416,148
(C22×C4)⋊2D13 = C4×C13⋊D4φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4):2D13416,149
(C22×C4)⋊3D13 = C23.23D26φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4):3D13416,150
(C22×C4)⋊4D13 = C527D4φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4):4D13416,151
(C22×C4)⋊5D13 = C22×D52φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4):5D13416,214
(C22×C4)⋊6D13 = C2×D525C2φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4):6D13416,215

Non-split extensions G=N.Q with N=C22×C4 and Q=D13
extensionφ:Q→Aut NdρLabelID
(C22×C4).1D13 = C52.55D4φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4).1D13416,37
(C22×C4).2D13 = C26.10C42φ: D13/C13C2 ⊆ Aut C22×C4416(C2^2xC4).2D13416,38
(C22×C4).3D13 = C2×C26.D4φ: D13/C13C2 ⊆ Aut C22×C4416(C2^2xC4).3D13416,144
(C22×C4).4D13 = C2×C52.4C4φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4).4D13416,142
(C22×C4).5D13 = C52.48D4φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4).5D13416,145
(C22×C4).6D13 = C2×C523C4φ: D13/C13C2 ⊆ Aut C22×C4416(C2^2xC4).6D13416,146
(C22×C4).7D13 = C23.21D26φ: D13/C13C2 ⊆ Aut C22×C4208(C2^2xC4).7D13416,147
(C22×C4).8D13 = C22×Dic26φ: D13/C13C2 ⊆ Aut C22×C4416(C2^2xC4).8D13416,212
(C22×C4).9D13 = C22×C132C8central extension (φ=1)416(C2^2xC4).9D13416,141
(C22×C4).10D13 = C2×C4×Dic13central extension (φ=1)416(C2^2xC4).10D13416,143

׿
×
𝔽